在CAR技术体系中,光刻胶中的光引发剂经过曝光后并不直接改变光刻胶在显影液中的溶解度,而是产生酸。在后续的热烘培流程的高温环境下,曝光产生的酸作为催化剂改变光刻胶在显影液中的溶解度。因此CAR技术体系下的光引发剂又叫做光致酸剂。由于CAR光刻胶的光致酸剂产生的酸本身并不会在曝光过程中消耗而是作为催化剂而存在,因此少量的酸就可以持续地起到有效作用。CAR光刻胶的光敏感性很强,所需要从深紫外辐射中吸收的能量很少,因此加强了光刻的效率。CAR光刻胶曝光速递是DQN光刻胶的10倍左右。彩色光刻胶及黑色光刻胶市场也呈现日韩企业主导的格局,国内企业有雅克科技、飞凯材料、彤程新材等。华东干膜光刻胶光致抗蚀剂
日韩材料摩擦:半导体材料国产化是必然趋势;2019年7月份,在日韩贸易争端的背景下,日本宣布对韩国实施三种半导体产业材料实施禁运,包含刻蚀气体,光刻胶和氟聚酰亚胺。韩国是全球存储器生产基地,显示屏生产基地,也是全球晶圆代工基地,三星,海力士,东部高科等一大批晶圆代工厂和显示屏厂都需要日本的半导体材料。这三种材料直接掐断了韩国存储器和显示屏的经济支柱。目前中国大陆对于电子材料,特别是光刻胶方面对国外依赖较高。所以在半导体材料方面的国产代替是必然趋势。上海半导体光刻胶光引发剂在集成电路制造领域,如果说光刻机是推动制程技术进步的“引擎”,光刻胶就是这部“引擎”的“燃料”。
抗蚀性即光刻胶材料在刻蚀过程中的抵抗力。在图形从光刻胶转移到晶片的过程中,光刻胶材料必须能够抵抗高能和高温(>150℃)而不改变其原有特性 。在后续的刻蚀工序中保护衬底表面。耐热稳定性、抗刻蚀能力和抗离子轰击能力 。在湿法刻蚀中,印有电路图形的光刻胶需要连同硅片一同置入化学刻蚀液中,进行很多次的湿法腐蚀。只有光刻胶具有很强的抗蚀性,才能保证刻蚀液按照所希望的选择比刻蚀出曝光所得图形,更好体现器件性能。在干法刻蚀中,例如集成电路工艺中在进行阱区和源漏区离子注入时,需要有较好的保护电路图形的能力,否则光刻胶会因为在注入环境中挥发而影响到注入腔的真空度。此时注入的离子将不会起到其在电路制造工艺中应起到的作用,器件的电路性能受阻。
光刻胶按应用领域分类,可分为 PCB 光刻胶、显示面板光刻胶、半导体光刻胶及其他光刻胶。全球市场上不同种类光刻胶的市场结构较为均衡。智研咨询的数据还显示,受益于半导体、显示面板、PCB产业东移的趋势,自 2011年至今,光刻胶中国本土供应规模年华增长率达到11%,高于全球平均 5%的增速。2019年中国光刻胶市场本土企业销售规模约70亿元,全球占比约 10%,发展空间巨大。目前,中国本土光刻胶以PCB用光刻胶为主,平板显示、半导体用光刻胶供应量占比极低。光刻胶所属的微电子化学品是电子行业与化工行业交叉的领域,是典型的技术密集行业。
历史上光刻机所使用的光源波长呈现出与集成电路关键尺寸同步缩小的趋势。不同波长的光刻光源要求截然不同的光刻设备和光刻胶材料。在20世纪80年代,半导体制成的主流工艺尺寸在1.2um(1200nm)至 0.8um(800nm)之间。那时候波长436nm的光刻光源被大量使用。在90年代前半期,随着半导体制程工艺尺寸朝 0.5um(500nm)和0.35um(350nm)演进,光刻开始采用365nm波长光源。436nm和365nm光源分别是高压汞灯中能量比较高,波长**短的两个谱线。高压汞灯技术成熟,因此很早被用来当作光刻光源。使用波长短,能量高的光源进行光刻工艺更容易激发光化学反应、提高光刻分别率。以研究光谱而闻名的近代德国科学家约瑟夫·弗劳恩霍夫将这两种波长的光谱分别命名为G线和I线。这也是 g-line光刻和 i-line光刻技术命名的由来。光刻胶的国产化公关正在展开,在面板屏显光刻胶领域,中国已经出现了一批有竞争力的本土企业。PCB光刻胶单体
经过多年技术积累,国内已形成一定光刻胶用电子化学品产能,国内公司市场份额逐步提升,国产替代正在进行。华东干膜光刻胶光致抗蚀剂
g-line与i-line光刻胶均使用线性酚醛成分作为树脂主体,重氮萘醌成分(DQN 体系)作为感光剂。未经曝光的DQN成分作为抑制剂,可以十倍或者更大的倍数降低光刻胶在显影液中的溶解速度。曝光后,重氮萘醌(DQN)基团转变为烯酮,与水接触时,进一步转变为茚羟酸,从而得以在曝光区被稀碱水显影时除去。由此,曝光过的光刻胶会溶解于显影液而被去除,而未曝光的光刻胶部分则得以保留。虽然g-line光刻胶和i-line 光刻胶使用的成分类似,但是其树脂和感光剂在微观结构上均有变化,因而具有不同的分辨率。G-line光刻胶适用于0.5um(500nm)以上尺寸的集成电路制作,而i-line光刻胶使用于0.35um(350nm至0.5um(500nm)尺寸的集成电路制作。华东干膜光刻胶光致抗蚀剂